If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4v^2-12v-12=0
a = 4; b = -12; c = -12;
Δ = b2-4ac
Δ = -122-4·4·(-12)
Δ = 336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{336}=\sqrt{16*21}=\sqrt{16}*\sqrt{21}=4\sqrt{21}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{21}}{2*4}=\frac{12-4\sqrt{21}}{8} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{21}}{2*4}=\frac{12+4\sqrt{21}}{8} $
| –8x+30=–29 | | 10.2-2w/3=7.3 | | -4+6|3x+2|=44 | | -13–5x=-3 | | (2x+2)(x+4)(3x-1)=23 | | 2x=0,6 | | 6x-21+90=180 | | 16*2^4x-2=1/64 | | 9(x-2)-27=-9 | | 0.16=t/873.36-2.15 | | 0.21=t/873.36-2.15 | | 6w+4w=180 | | 5(3x+2)=15x6 | | 0.6=0.5xN | | 10y+3=3 | | 7500=3b×b | | 3x+X+150°+130°=180° | | 480.6=2m | | Y=$7.50x+5 | | Y=5x+$7.50 | | (D^3-9D)y=0 | | -{1+7x}-6{-7-x}=36 | | –4w+10=–2 | | 2m=470.6 | | 9/10=d/6.2 | | 5x^2+5x-1=-2 | | 5x^2-25x+10=-21 | | 5x^2-25x+10=-25 | | 5x^2-25x+10=50 | | X*3x=897 | | (3)/(2x)-(1)/(2(x+10))=1 | | 15)y-4-5=y+1-3 |